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1. INTRODUCTION

This paper presents a new recursive Newton-Euler procedure for the formulation and solution of
manipulator dynamical equations. The procedure incluaes rotational and translational joints and a
topological tree. This model was verified analytically using a planar two-link manipulator. Also, the
model was tested numerically against the Walker-Orin (ref. 1) model using the Shuttle Remote
Manipulator System data. The hinge accelerations obtained from both models were identical. The
computational requirements of the model vary linearly with the number of joints. The computational
efficiency of this method exceeds that of Walker-Orin methods.

This procedure may be viewed as a considerable generalization of Armstrong's method (ref. 2). A
six-by-six formulation is adopted which enhances beth the computational efficiency and simplicity of
the model.

In section 2.1, we begin with assuming an open chain, rotational joints, and prescribed base
motion. In section 2.2, the procedure is extended to translational joints. Section 2.3 extends the
formulation to a topological tree. Section 3 includes the algorithm summary and computational

efficiency. The appendix contains descriptions of coordinate frames and notations and a summary of the
standard kinematlc relationsused inthe algorithm.

2. DYNAMICS FORMULATION

Let'sbegin with a quick look at the procedure. The firststep isto set up the equations of motion

for a generic link i(rotational)in the i - I frame in a 6 X 6 formi.namely, SzU 4 --Fi*. U_ isa 6 x I

vectorconsistingofthe reactionloadsfrom link i - I on link iand 0i,the hinge accelerationof link i.S i

isa coefficientmatrix, and Fi* consistsof the mass and inertiaoflink i(inertialparameters) acting on
the inertialmotion ofthe i - I frame, nonlinear terms, body forcesand torques, control torques, and

reaction loadsbetween link iand linki + 1.

The procedure consistsessentiallyoftwo phases, the inbound and the outbound. In the inbound
phase,one begins at the freeend, i = N. Since there isno outbound link,the reaction loads from link N
on link N + I are zero. Therefore, F_ is given by F_'N = A N N- I qN- I N- 1 ÷ BN, N- I where AN, N- 1
involves only link N inertial paramet_'rs. ' '

Now URN_I,N [equation (2.1.7.1)] may be solved for in terms of SN-1,AN, N_I,qN_I,N_I,

and BN, N_ 1 but not 0"N' Now we are ready to proceed to link N - I and substitute URN_I,N .

However, URN_I,N must be transformed to the N - 2 frame first. This transformation results in

decomposing (URN_I, N)N_2 into three terms: the first involving eN-l; the second, qN-2, N -2' and the

third, a collection of nonlinear and forcing terms. This decomposition enables one to group these terms

with their counterparts from link N - I. The resulting equation of motion is

LN_ 1 UN_ 1 "- FN_ I
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Notethat in thisequation of motion for link N- I, 0"N does not appear, only ON-I' ON-2' etc.

Repeating the procedure by solving for uRi_I, i for i = N - 2, N - 3 ..... we finally obtain the

equation containing the hinge acceleration of the base link only.

For the outbound pass, beginning at the base link, link 2, we compute 0"2,_2)2 , and (_2)2, then

proceed to link 3 to compute 03, (£3)3 , and (_3)3 , and so on to obtain all hinge accelerations.

Now we proceed with a detailed description of the model.

2.1 MANIPULATOR WITH ROTATIONAL JOINTS

2.1.1 INBOUND PASS

The translationalequation of motion for the center of mass of link iin the i - 1 frame is(see
figure2-I and the appendix)

(@,) (2.1.1)

LINK 4

____ END EFFECTOR. - " " " LOADS

LINK N

LINK 3

_i BASE LINK

(LINK 2)

OPEN KINEMATIC CHAIN LINK i FREE BODY DIAGRAM

Definitions:

(Fi l)i - 1 =

tNi I)i - 1 =

(f_c)i - l =

{f=i+lCli_ 1 =

{[i+l,ili_l =

(ni+l,j)i_ 1 :

(fi-l, _ )i 1 :

(ni_l,i)i_l =

(Pl*;_ _ 1 =

{nl + IC)i - I =

In_ici= - I

(ff, t E_ i 1 =

(NiEii_ l =

the inertia forces developed in link i in the t - 1 frame

the inertia torques developed in link _ in the i - I frame

the control forces applied at the proximal joint of link i in the i - l frame

the control forces applied at the distal joint of link i in the i - I frame

the reaction force exerted on link i by link i + 1 expressed in the i - I frame

the reaction moment exerted on link i by Link i + I expressed in the i - I frame

the reaction force exerted on link i by link i - I expressed in the i I frame

the reaction moment exerted on link i by link i - ! expressed in the i = J frame

the position vector of the i frame relative to the i - ! frame and expressed in the i - I frame

thecontroltorquesappliedatthedistaljo_ntoflink i inthe i I frame

the control torques applied at the proximal joint of link i in the t - ! frame

the external forces applied at the center of mass of link i in the i - I frame

the external torques applied at the center of mass of link ( in the i - 1 frame

Figure 2-1.
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E F i is the total force exerted on the center of mass of link i in the i - I frame. Pi is the linear
momentum of the center of mass of link i in the i - 1 frame.

_, Fi =fi+l,i +f_-l,i "/"Ff -fi+l +f; (2.1.2)

Substituting equation (2.1.2) into equation (2.1.1) yields the following translational equation of
motion for any link i in the i - I frame:

• :)a.=m + Xr_ i i -1 _i -1

The rotational equations of motion for link i in the i - I frame (torque balance about the
proximal joint of link i) are

) ) ( )( _ N =-- + v_.i_,x p i (2.1.4)X p. ÷ [i_i i-I i-1i i-I dt r_ _

or

(2.1.3)

(2.13.1)

(2.1.3.2)

r" (,,) (,,)= X m 5¢g + _ + _i X co (2.1.5)
i i-I _i _l i_l",l i_l_

(li)i-1 = R,_I, il_ R,, ,-I = Ji (2.1.5.1)

(2.1.5.2)( ) + N! + P*. xf i

f r* FE c c n cN t=N + X P*. xf_+! +- -ni+ l .,

The rotationalequation ofmotion forarbitrary linkiis:

* ( * 0:) (z Oi)--a* _* * N t r*ni_l,i + m.r. X r i X -Ji - xz_z _i-I i-1 --_i + i +-'r" X,6i_ _ i + -i -,a

+,. ._t,_+ l _ _ +I,i

a."m = Ji _i -1

[ }=Ji _i-lX_i-lOi +_.×J._o._, i-.,

Equations (2.1.3) and (2.1.6) may be combined and written in the following matrix form:

S U=F:

= U R

(2.1.5.3)

(2.1.6)

There isno reaction torque inthe drive direction.

S i=I-ZizT-ai,i_lz,ZT, , -z.zTja, , , (2.1.7.2)

where ! is a 6 X 6 identity matrix, Z i is its last column, and Ji a is the actuator inertia associated with
hinge i.

i =Ai, i-lqi-l,i-I +Bi,i-I 4" i +1 4" p_X_i,i+l

31t



A (2.1.7.4)

=

I B _fc+fc _FE 1

A ..,Ci $i $i+l _ i

Bi, i-I = * * t (2.1.7.6)

[I] is a 3 x 3 identity matrix, and/_*] is a skew symmetric matrix associated with r *.

Since the formal structure of equation (2.1.7) has been defined, consider link N (the link at the

(2.1.8)

(2.1.9)

+ BN, N_ ! (2.1.10)

, Vi=l,2 ..... N (2.1.11)

freeend) and make use of the followingboundary conditions:

°o
_N,N+IJ

LN A__SN

Therefore, equation (2.1.7) applied to link N is

FN = AN, N-1 qN-I

G ALT_
| I

U N = GNF N (2.1.12)

Although the expression for 0_/was obtained in equation (2.1.12), 0N cannot be computed until

_N-1 and _N-l are. Therefore, proceed to link N - I and set up equation (2.1.7) for i --- N - I.

When transforming (uRi_I, i ) into the i - 2 frame, the following recursive relation is used:

() ( ")qi, i i-I =pT qi_l,i_l+oi, i_l+oi, i_! , Yi=l,2 ..... N (2.1.13)

°i,i_I = O'iZ., (2.1.13.1)

(2,1.13.2)
= j

I is a 3 X 3 identity matrix, and [.P_*] is a skew symmetric matrix associated withPi".

N-2

(2.1.13.3)
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at

FN_ I = AN_I,N_2qN_2,N_ 2

UN I,N

4- BN_I,N_ 2 4-

N-2

4- at

PN_I× _I,N
N-2

at

UN-I'N = [RN_2,N_IYGNAN, N_IRN_2, I,N-I 4- RN-2, N-IYGNBN N-I

0 N-2

* atT
AN, N_ 2 = RN_2,N_I YGNAN,N_IRN_2,N_ I

* T
AN, N-2 = PN-I AN, N-2PN-I

at

BN, N-2 = RN-2,N-I YGNBN, N-I

$ at at

BN, N_ 2 ----PN_IBN, N_2 4- AN, N_2ON_I,N_ 2

The superscript T denotes the transpose operator.

Ri_l, i : Ri_l,i

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18)

Obviously, upon substituting for U R into equation (2.1.18) for i -- N - I, we getN-I.N

FN_ I = AN_I,N-2 4- AN, N-2 qN-2,N-2 4" BN_I,N_ 2 4- BN, N_ 2 4- A ,N_2ON_I,N_2
o.

Since A'N, N-2 °N-I, N-2 is a function of ON_ I only, it can be moved to the left-hand side to

combine with its counterpart from link N - I.

Thus, in general, the equation of motion for any link i takes the following form:

L.U.=F.

" zT
L i = S_ - Ai+1,i_iZ. | |

F i = A at + B_i,i-lqi-l,i-I ,i-i

A* = A + A_i,i-I i,i-I +l,i-I

* atT pr
A_+l,i_l=ViR__l, iYi+IGi+IAi+l,iRi-l,_ i

B: :B,_,i-I ,i-I

B_+1,i_l = P, Bi+l.,_l + A_÷l,,_loat i,i-I

at

Bi+l,i_ I = R__l, iYi+lGi+lBi+l,i

(2.1.19)

(2.1.19.1)

(2.1.19.2)

(2.1.19.3)

(2.1.19.4)

(2.1.19.5)

(2.1.19.6)

(2.1.19.7)

2.1.2 OUTBOUND PASS

Assume a prescribed base motion In this case, b t, _1, and (v 1,wl) are given First compute F 2

and then solve for 02 from the following equation.
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O;-- zT G2Fz (2.1.20)

Once 02 is obtained, (_2)2 and (_2)2 can be computed. This completes the outbound

computational cycle for the base link. Next we can move on to link 3 and repeat the same sequence -

namely, compute F3, 0"3, (5-3) 3, (_3)3, 0"4, etc., until all hinge accelerations are determined. Then we
proceed to the integration phase.

2.2 MANIPULATOR WITH TRANSLATIONAL JOINTS

Some manipulators contain a mixture of translational and rotational joints. The procedure

developed in the previous section for rotational joints is still applicable with slight modifications of the

expressions involved (using the kinematics for translational link). These expressions include Ui, Z e
* fl,ai.i-l' °i, i-I ,_i, and If we denote these variables by a prime to distinguish them from their

rotational counterparts, we get

f

* (2.2.2)

U',= [f,_,.,(1) .f'-I,(2), 0", _a,_,,,(1) _ai_,.,(2) -n,_1,(3)]. (2.2.3)

B'i i-! = , , (2.2.4)

' +f.i Xfl'i -Nt

O i, i_ I -_

'* _i-IX(_z-lXPi +2ffi-lXZi-lOi
= - (2.2.6)

°a'i-I _)

g'.=[O 0 1 0 0 O] r (2.2.7)
1

The remaining variables are defined as in the rotational joints case.

Therefore, the equations of motion for any link i may be written in the following form:

L.U.=F.

where the formulas obtained in the rotational link case still hold. Note that the only distinction

between rotational and translational joints is through the use of either fl, ft.*, U., o .... o * ._ 1, and Zi
__I _I I l,I--/ l,l

for rotational linksorfl.',fl.*', U' o'. °*'i i /,andZ' for translational links._l _ _ ' I,i-l' , - i

2.3 TOPOLOGICAL TREE

The case of a manipulator with tree topology does not alter the formulation in a fundamental
manner. In fact, only the root links must be treateddifferently.

Consider the system shown in figure 2-2. For any branch b., we can proceed as in the open chain
case until the root link is reached. Denote the root link by K; hence,
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Figure 2-2.

(2.3.1)

Recall that in the open chain case (Ui,i+#R)iwas transformed tothe i - I frame and expanded interms

ofA*i +I,i-I'qi-I,i-I'and B* ÷I,i-1"

Therefore, we get

RI K + I Rm

or

(2.3.2)

o

"= AK+I,K_ 1

j=l

_ SJ

BK, K_ I = BK, K_ ! 4" _ BK+I,K_I

(2.3.3)

(2.3.4)

j=l

*j
For any j, the definition ofA*JK÷I,K_ 1 and B K+I,K-! is the same as that of the open chain.

ALGORITHM SUMMARY AND COMPUTATIONAL EFFICIENCY

3.1 OPEN KINEMATIC CHAIN

Startat the freeend, i = N.

3.1.1 INBOUND PASS

Repeat the followingsequence fori = N, N - I,

I. Compute A* and B _ (may be skipped for linkN).
i÷l,i-I i÷l,i-I

2. ComputeA* andB*
i,i-I i,i-l"

315



3.1.2

3. Compute L tand G_.

4. i --i - I and repeat untili = 2.

OUTBOUND PASS

Prescribed base motion: _I, _I, _I, and v! are given. Repeat the followingstepsfor i = 2,3....N.

I. Compute eitherF orF '(i= I).

2. Compute 0_.

3. Compute (_i) and (-_i)

4. i= i + I and repeat steps I through 3.

3.2 TOPOLOGICAL TREE

3.2.1 INBOUND PASS

case.
Apply the open kinematic chain procedure to allbranches untilthe base node isreached in this

1. C°mputeA*JK+l,g_ I andB*JK÷t,K_ l orA*Y'K+I,K_ I andB_'J'K÷l,K_l forall
j = I, 2 ..... m where m is the number of branches at the base node.

2. ComputeA*K,K_ ! and B*K,K_ 1.

3. Repeat steps2,3,and 4 as in the open chain unless another isreached; insuch case,repeat
steps I and 2.

3.2.2 OUTBOUND PASS

No change.

3.3 COMPUTATIONAL EFFICIENCY

The number of multiplies is equal to 258N - 119, and the number ofadds is equal to 19IN - 83,
where N is the number of links.

4. CONCLUSIONS

A general procedure for the formulation and solution of the equations of motion for a rigid
manipulator has been presented. This procedure includes a solution for the tree topology. The
extension toa closedkinematic chain followsnaturally. However, the presentation of thisextension is
pending formal implementation and verification.
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APPENDIX
LINK COORDINATE FRAME AND NOTATION

We adopt a dynamic reference frame. This frame is used here with the Denavit and Hartenberg
convention (ref.3). The jointsare points of articulationbetween links and are numbered such that

jointiconnects link i - I and link i.Consequently, jointsiand i + I are the proximal and distaljoints,

respectively,oflink i.Each link iisassigned a Cartesian coordinate frame, (xi,y_,zi),which isfixedon
the linkand therefore moves with it.(See figureA-1.)
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Zi_ ! Z i

Xi 1_ #/

= i_"_' = JOINT i + !

LINK i-I_ J."_IIMI( ; /i/ _.__"_""-..._

y, t .i------ _"",,,,_---T'-.) / •
/-'i_" Yl

JOINT i J_

PROXIMAL JOINT

Figure A-I

The z i axis is the axis of the rotation/translation of the distal joint of link i. The _Lxaxis is directed along

the common normal fromz=_t t°zi' The,yi axis equalszi X x i to complete the right-handed system.

In order to associate a particular vector with the coordinate frame, an indexed parenthesis notation is
introduced as follows.

= the link i relative displacement with respect to and expressed in the i - 1 frame
(Oi ) i-1

(P*i)i_i = the position vector of the i frame relative to and expressed in the i - I frame

To relate two neighboring coordinate frames, a transformation from the i - I frame to the i frame is
defined as successive rotations of 0 i about the.z i -1 axis followed"b'_ i about the x i axis. (See figure A-2.)
This is denoted as

Ri, i-1 =.o,..(+)Rot,(o)
l --!

COS 0

l

- cos _ _ sin 0 i

sin ¢i sin 0 i

sin O= 0 7

cos _ i cos 0 i sin _ _J- sin _ i cos Oi cos dpi

R -l =RT
i,i-1 l,i-I = Ri-l,i

.cosO. J

al t

a. sin O.
| t

s i

(A.l.l)

(A.I.2)

(A.1.3)

_i LINK i

_ / _

.,2- ,
LINK i- 1J " _-1

Note: When the z i_l and z i axes are aligned, it implies that Oi = 0.

Figure A-2

317



The following is a set of standard kinematic relations (see figure A-3) for the motion of a rigid body
relative to a moving reference frame.

= and (_s) = zi-l_(e'),-1 o ,-I o

if link i is rotational

if link i is translational

(A.2.1)

zi-I

z i
x t

Figure A-3
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